Identification of a major QTL controlling the content of B-type starch granules in Aegilops
نویسندگان
چکیده
Starch within the endosperm of most species of the Triticeae has a unique bimodal granule morphology comprising large lenticular A-type granules and smaller near-spherical B-type granules. However, a few wild wheat species (Aegilops) are known to lack B-granules. Ae. peregrina and a synthetic tetraploid Aegilops with the same genome composition (SU) were found to differ in B-granule number. The synthetic tetraploid had normal A- and B-type starch granules whilst Ae. peregrina had only A-granules because the B-granules failed to initiate. A population segregating for B-granule number was generated by crossing these two accessions and was used to study the genetic basis of B-granule initiation. A combination of Bulked Segregant Analysis and QTL mapping identified a major QTL located on the short arm of chromosome 4S that accounted for 44.4% of the phenotypic variation. The lack of B-granules in polyploid Aegilops with diverse genomes suggests that the B-granule locus has been lost several times independently during the evolution of the Triticeae. It is proposed that the B-granule locus is susceptible to silencing during polyploidization and a model is presented to explain the observed data based on the assumption that the initiation of B-granules is controlled by a single major locus per haploid genome.
منابع مشابه
Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa.
UNLABELLED Starch is the main component in the wheat endosperm and exists in two forms including A- and B-type granules. A bread wheat line CB037A and an Aegilops line Aegilops crassa were studied for the underlying starch biosynthesis mechanism in relation to granule types. The wheat line contains both types of starch granules while the Aegilops line only has the A-type. Differential starch gr...
متن کاملIdentification of major and minor genes associated with heading date in an indica × indica cross of rice (Oryza Sativa L.)
In this study, quantitative trait loci (QTLs) controlling rice heading date were detected in a F2:3 population derived from a cross between an indica rice variety, Tarom Mahalli, with early heading date, and an indica variety, Khazar, with late heading date. SSR linkage map was constructed using 74 polymorphic markers and 192 F2 individuals and covered a total of 1231.50 cM of rice genome. QTL ...
متن کاملSoft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties
Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the phys...
متن کاملNatural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics.
Besides being a metabolic fuel, carbohydrates play important roles in plant growth and development, in stress responses, and as signal molecules. We exploited natural variation in Arabidopsis (Arabidopsis thaliana) to decipher the genetic architecture determining carbohydrate content. A quantitative trait locus (QTL) approach in the Bay-0 x Shahdara progeny grown in two contrasting nitrogen env...
متن کاملThe Physicochemical Properties of Starch Component of six Iranian Rice Cultivars
Using a wide range of techniques, including differential scanning calorimetry, X-ray diffraction, Rapid Visco Analyser and Fourier Transform Infera Red Spectroscopy, some physicochemical properties of the starch fraction of six Iranian rice cultivars (Tarom, Tarome Hashemi, Neda, Ramezani, Fajr and Kamfirouzi) [1]were studied and compared. DSC data showed that starch granules of different rice ...
متن کامل